欢迎来到VOA在线收网 www.voa365.com
当前位置:VOA NEWS > VOA慢速英语 > 美国人物志 >

Barbara McClintock, 1902-1992: She Made Discoveries about Genes and Chromosomes

2012-06-19 22:59来源:未知

音频下载

Geneticist Barbara McClintock

CHRISTOPHER CRUISE: This is PEOPLE IN AMERICA in VOA Special English. Today, Jim Tedder and Shirley Griffith tell about Barbara McClintock. She was one of the most important scientists of the twentieth century. She made important discoveries about genes and chromosomes.
 
JIM TEDDER: Barbara McClintock was born in nineteen-oh-two in Hartford, Connecticut. Barbara was the third of four children. Her family moved to the Brooklyn area of New York City in nineteen-oh-eight. Barbara was an active child with interests in sports and music. She also developed an interest in science.

She studied science at Cornell University in Ithaca, New York. Barbara was among a small number of undergraduate students to receive training in genetics in nineteen twenty-one. Years later, she noted that few college students wanted to study genetics. 
 
SHIRLEY GRIFFITH: In the early nineteen twenties, genetics had not received widespread acceptance as a subject. Only twenty years had passed since scientists rediscovered the theories of heredity. Austrian researcher Gregor Mendel had proposed these ideas in the middle of the nineteenth century after completing a series of experiments with plants. His work helped scientists better understand how genes operate. They showed how genetic qualities are passed to living things from their ancestors.
 
JIM TEDDER: Barbara McClintock decided to study botany, the scientific study of plants, at Cornell University. She completed her undergraduate studies in nineteen twenty-three. McClintock decided to continue her education at Cornell. She completed a master’s degree in nineteen twenty-five. Two years later, she finished all her requirements for a doctorate degree.

In the late nineteen twenties, McClintock joined several other students in a group that studied genetics. The students included a future winner of the Nobel Prize, George Beadle. Another was Marcus Rhoades. Years later, he would become a leading expert in genetics.

McClintock said both men recognized the importance of exploring the connection between genes and chromosomes.

McClintock stayed at Cornell after she completed her education. She taught students botany. She also supervised genetic studies of the corn plant, or maize. She studied chromosomes, which are lines of genes. She made several discoveries about genes and chromosomes.
 
SHIRLEY GRIFFITH: The nineteen thirties were not a good time to be a young scientist in the United States. The country was in the middle of the great economic Depression. Millions of Americans were unemployed. Male scientists were offered jobs. But female geneticists were not much in demand.

McClintock received two offers to travel and carry out research projects. The first came from America’s National Research Council. She worked at several places, including Cornell and the University of Missouri in Columbia. Later, a group called the Guggenheim Foundation provided financial aid for her to study in Germany. McClintock went to Berlin, but returned to Cornell the following year. Her skills and work were widely praised. But she still was unable to find a permanent job.
 
JIM TEDDER: For years, scientists had been using x-rays to study genetic material in plants and other organisms. They found that x-rays caused genes to change.

Sometimes, the x-rays physically broke the chromosome. Genetic researchers looked for changes in the organism. Then they used this information to produce a map linking the changes to a single area of the chromosome.

McClintock became interested in the way genes reacted to unusual events. She formed a successful working relationship with Lewis Stadler of the University of Missouri. He had demonstrated the effects of x-rays on corn.

Stadler sent maize treated with radiation to McClintock. She identified unusual areas she called ring chromosomes. She believed they were chromosomes broken by radiation. The broken ends sometimes joined together and formed a circle, or ring. This led her to believe that a structure at the end of the chromosome prevents chromosomes from changing. She called this structure the telomere.
 
SHIRLEY GRIFFITH: Stadler got the University of Missouri to offer a permanent position to McClintock in nineteen thirty-six. She became an assistant professor.

During her time at the university, she worked with plants treated with x-rays. She also discovered plants with chromosomes that broke without help of radiation. She described this activity as the breakage-fusion-bridge cycle.

University officials and professors recognized the importance of McClintock’s research. Yet she believed that she was not able to make progress in her position. So she decided to leave the University of Missouri.
 
JIM TEDDER: An old friend from Cornell, Marcus Rhoades, invited McClintock to spend the summer of nineteen forty-one working at the Cold Spring Harbor Laboratory. It is a research center on Long Island, near New York City.

McClintock started in a temporary job with the genetics department. A short time later, she accepted a permanent position with the laboratory. This gave her the freedom to continue her research without having to teach or repeatedly ask for financial aid.

At Cold Spring Harbor Laboratory, McClintock continued her work with the breakage-fusion-bridge cycle. She found that some corn plant genes acted in an unusual way. They appeared to move from cell to cell during development of corn particles, or kernels. She discovered that the genes moved on and between chromosomes.
 
SHIRLEY GRIFFITH: McClintock confirmed her discovery and extended her observations for six years. The changes could not be explained by any known theory. So, she developed her own theory. She believed the moveable genes were not genes at all, but genetic controllers or controlling elements. She said they influenced the actions of other genes.

During this period, McClintock was elected to the National Academy of Sciences. She was the third woman ever so honored. She also was named president of the Genetics Society of America.
 
JIM TEDDER: In nineteen fifty-one, McClintock was asked to present her findings at a conference held at Cold Spring Harbor Laboratory. Her report described the movement of genes from one part of a chromosome to another. She used the presentation to discuss her ideas of controlling elements in genes.

The other scientists reacted to her ideas with a mixture of criticism and silence. Most scientists believed that genes did not move. Few people seemed to accept her findings. Yet others argued that her experiments were complex and difficult to explain, even to other scientists. They said she would not have been invited to speak unless conference organizers understood some of the importance of her work.

SHIRLEY GRIFFITH: For years, many scientists dismissed McClintock’s findings. During this period, she continued doing her own work and reaching her own findings.

Beginning in the late nineteen fifties, she went to Central and South America to study different kinds of maize plants. She examined the development of agricultural maize by native peoples. She also assisted younger scientists and students in genetics.
     
Her work at the Cold Spring Harbor Laboratory was recognized in nineteen seventy. She was given the American government’s highest science award – the National Medal of Science.
 
JIM TEDDER: By the nineteen seventies, newly developed methods of molecular biology confirmed what McClintock had learned through observation. Her discoveries have had an effect on everything from genetic engineering to cancer research.

McClintock won the Nobel Prize for Physiology or Medicine in nineteen eighty-three for her discovery of the ability of genes to change positions on chromosomes. She was the first American woman to win an unshared Nobel Prize.

Barbara McClintock remained at Cold Spring Harbor for the rest of her life. She died in nineteen ninety-two. She was ninety years old.

(MUSIC)

CHRISTOPHER CRUISE: This program was written by George Grow. Your narrators were Jim Tedder and Shirley Griffith. Join us again next week at this time for People In America in VOA Special English.

(责任编辑:admin)
最新新闻
  1. 网传日月光Q4产能利用率降至70%
  2. 新型存储器已经开始增长,到20
  3. 市场人士透露:联发科在汽车芯片
  4. 【VOA在线闲聊】三星收购Arm会步英
  5. Nikola召回迄今为止生产的93辆Nik
  6. 蚂蚁数科两项区块链专利完成一对
  7. 蔚来申请注册“NIO CERTIFIED 蔚来官
  8. 获小米超千万投资 改装车公司工
  9. 法拉第未来首款电动汽车FF 91再次
  10. 消息称LG显示计划明年生产920万块
  11. 宝马面向欧洲市场推出最小的跨界
  12. 美国副总统哈里斯承诺就电动汽车
  13. 知情人士透露称马斯克和推特CE
  14. 因苹果缩减订单 台积电或修改明
  15. LG推出一项新技术,以开放局域网
  16. 小米13正式上线:骁龙8Gen2发布1
  17. 米家3 KG迷你洗衣机售价699元
  18. 苹果公司官方非常兴奋:印度将生
  19. 中国广电在全国31个省区开通广电
  20. 华为 Mate 50 Pro国外上市:售价远高
  21. 特斯拉柏林超级工厂回收工厂发生
  22. 华为 Mate 50原价4999
  23. iPhone 14销售比上一代下降了11%
  24. 2021至2025中国台湾将投350亿元新台
  25. 华为Mate50Pro预定5 G芯片,苹果公司
  26. 锐龙7000核显性能实测 单核及多核
  27. 索尼PS5最新更新:6 nm制程功率与
  28. 华为会议马上就要开始了!一种全
  29. 小米再次成为了冠军!该系列产品
  30. 还能吸收病毒?!戴森首个产品也
  31. 小米又推出了一款新产品,售价
  32. Imagination携手百度飞桨创建Model
  33. 奔驰要不要再加价?2024将发布
  34. TikTok在英国或被罚款2900万美元 被
  35. iPhone15PM改用 ULTRA:笔记本和 iPa
  36. 因库存不断提升存储芯片持续降价
  37. 预计小米Civi2将推出五款新产品
  38. 可靠商务桌面电脑推荐:联想M4
  39. 受飓风影响:NASA撤回阿尔忒弥斯
  40. 《三体》影迷们疯狂了!
  41. 4090设计实在是太离谱了!
  42. Meta试图Facebook和Instagram账户添加到
  43. 苹果公司在技术上遭受重大挫折,
  44. 我国成功发射遥感三十六号卫星,
  45. 骁龙8Gen2+120 W快速充电!小米13系
  46. 屏幕下手机价格大跌,灵动岛安卓
  47. 亚马逊宣布下月举办新会员促销活
  48. 酷睿i9-13900K预告片,5.8 GHz稳定!
  49. 美国流媒体巨头Netflix宣布在芬兰
  50. 外科手术机器人 商业化将加快世